

Liquid Air Combined Cycle (LACC) for Power and Storage

Award No. DE-FE0032002

DOE: \$ 250,000

Non-DOE: \$ 69,120

Total: \$ 319,120

Prime recipient

Mr. Aaron Rimpel (PI)

Dr. Owen Pryor

Dr. Aaron McClung

Dr. Tim Allison

Sub-recipient

Dr. William Conlon (Co-PI)

Mr. Milton Venetos

LACC can be applied to existing or new combustion turbine assets

- Advantages
 - Any CT
 - Site anywhere
 - High-TRL components
 - Valuable at large scale
 - Lower CAPEX
- Project objectives
 - Identify application
 - LACC conceptual design
 - Demo-scale LACC

Feasibility calculations have demonstrated preliminary performance

Charging

• 400 kWh/m.t.

43 bar

Discharging

Net power

- SC: **54 MW**

- CC: 77 MW

LACC: 104 MW

Fuel heat rate

- SC: 8,725 Btu/kWh 5,993 Btu/kWh

LACC: 4,532 Btu/kWh

Primary (electric) energy rate

Liquid air rate = 2.6 kg/kWh

Key commercialization/market considerations for LACC are...

- ENERGY

 National

 ENERGY

 TECHNOLOGY

 LABORATORY
- Best suited for long duration

- Cryo liquefaction is capital intensive
 - LACC reduces Liq. Air consumption
 - Zero cost storage medium offsets CAPEX
 - Benefits from economy of scale
- Coupling opportunities
 - Fuel security (co-liquefy natural gas)
 - H₂, Renewable fuel cost savings via low heat rate
 - Oxy combustion for carbon capture

What is needed to be able to pilot a demo LACC plant by 2025?

- ORC Turbo-machinery selection/design
 - Multiple Radial flow Generator-loaded-expanders (repurposed from LNG)
 - Axial flow high pressure ratio expander
- ORC Heat Exchanger design
 - Recuperator (Δp , effectiveness, cost)
 - LA regasifier/ORC condenser

Storage economics driven by total CAPEX and capacity factor

- Total CAPEX
 - Mature discharge equipment → increase kW_{discharge} to reduce \$/ kW_{discharge}
 - Air is free, tanks have modest cost \$/kWh_{storage}
 - Leverage LNG experience to reduce \$/kW_{charge}
- Discharge capacity factor is limited by charging hours
 - Faster charging
 - Charge Power > Discharge Power
 - Optimal ratio depends on wind/solar over-generation duration
 - Charge Energy < Discharge Energy
 - Reduce liquid air rate

Liquid Air Combined Cycle for Power and Storage

Award No. DE-FE0032002

Aaron Rimpel aaron.rimpel@swri.org

William Conlon bill.conlon@pintailpower.com